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We study a firm’s optimal pricing policy under commitment. The firm’s objective is to maximize its long-
term average revenue given a steady arrival of strategic customers. In particular, customers arrive over

time, are strategic in timing their purchases, and are heterogeneous along two dimensions: their valuation for
the firm’s product and their willingness to wait before purchasing or leaving. The customers’ patience and
valuation may be correlated in an arbitrary fashion. For this general formulation, we prove that the firm may
restrict attention to cyclic pricing policies, which have length, at most, twice the maximum willingness to
wait of the customer population. To efficiently compute optimal policies, we develop a dynamic programming
approach that uses a novel state space that is general, capable of handling arbitrary problem primitives, and that
generalizes to finite horizon problems with nonstationary parameters. We analyze the class of monotone pricing
policies and establish their suboptimality in general. Optimal policies are, in a typical scenario, characterized
by nested sales, where the firm offers partial discounts throughout each cycle, offers a significant discount
halfway through the cycle, and holds its largest discount at the end of the cycle. We further establish a form of
equivalence between the problem of pricing for a stream of heterogeneous strategic customers and pricing for
a pool of heterogeneous customers who may stockpile units of the product.
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1. Introduction
Dynamic pricing is widely used in practice by firms
in a variety of industries, ranging from airlines and
hotels to supermarkets and clothing outlets (Talluri
and van Ryzin 2005). The drivers for dynamic pric-
ing are multiple and range from the need to adjust
prices to reflect the opportunity cost associated with
scarce capacity to the stochastic nature of the demand
environment and to the lack of information about the
underlying demand. In such cases, prices are stochas-
tic and difficult to predict for consumers. However,
in various practical settings, dynamic pricing poli-
cies are highly predictable. For example, supermar-
kets frequently offer discounts in a predetermined
fashion, even for categories with very stable demand
(e.g., shampoo or coffee). Retail outlets often dis-
count items during holiday weekends. Why do retail
stores use such predictable discounting strategies?
It does not appear to be designed to liquidate inven-
tory, since stores typically increase order sizes to sup-
pliers in anticipation of increased demand. A more
likely explanation is that firms are engaging in a
form of intertemporal price discrimination to capture
surplus from a heterogeneous customer base. For

example, customers who have high valuation and
low patience buy when the need for a given prod-
uct arises, whereas those who have a lower valuation
but are more patient may wait until a promotional
price is offered. A pricing policy meant to extract the
maximum revenues will potentially adjust prices over
time to capture low value customers while still tak-
ing advantage of the revenue opportunities associated
with impatient customers.
In the present paper, we study the firm’s problem

of how to commit to a sequence of prices over time
to maximize revenues given a customer population
with heterogeneous patience levels and valuations.
We consider a firm selling a single product to a sta-
tionary flow of heterogeneous customers that arrive
over time. Each customer arrives with unit demand
and is characterized by her valuation for the product
and her willingness to wait before purchasing. The
latter may be interpreted as the time the customer is
willing to monitor the market. The customers’ valua-
tions and willingness to wait can take a very general
form and in particular may be correlated. The firm’s
problem is to select prices to offer for all future peri-
ods, to maximize long-term average revenues. The
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customers are assumed to be strategic; they anticipate
the firm’s prices and optimize their purchase timing
over the time they are present in the system (based on
their willingness to wait). If the lowest price the cus-
tomer sees during her time in the system is below her
valuation, she will purchase the product at that low-
est price, otherwise she will leave the system without
purchasing the product. Roughly speaking, this prob-
lem may be interpreted as a two-stage game in which
the firm first commits to an infinite sequence of prices
and the customers respond by selecting whether and
when to purchase.
Main Contributions. At a high level, the present

paper makes four main contributions.
(1) We establish that the pricing problem is

amenable to analysis under fairly general assump-
tions. In particular, we show that an optimal policy is
cyclic, and we derive a tight bound on the length of
optimal cycles.
(2) We develop a general dynamic programming

approach with a novel state-space structure that lever-
ages the structure of the problem. Given the bound on
the length of cycles of optimal policies, we establish
that this procedure computes such policies efficiently.
(3) We demonstrate the algorithmic technique we

develop can also be applied to finite-horizon prob-
lems with nonstationary demand, with customers
incurring a uniform cost of waiting.
(4) We establish a clear connection between two

settings that lead customers to time their pur-
chases: varying patience levels for one-time purchases
and varying storage capacities for repeat purchases
(in which case consumers may stockpile). In particu-
lar, we show that the two problems are equivalent.
In more detail, we establish that for any joint dis-

tribution between patience levels and valuations, the
firm may restrict attention to cyclic pricing policies.
This initial result validates some of the cyclic policies
being adopted in practice and enables one to narrow
down the space of policies that need to be consid-
ered for optimization purposes. Using the structure
of the firm’s price optimization problem, we further
show that one may restrict attention to cycles that
have length at most twice the maximum willingness
to wait of the customer population. This is a tight
bound on the shortest cycle length of an optimal pol-
icy. This crisp result relies on a series of structural
insights, which revolve around the concept of effective
price tables, an object that summarizes the mapping
from the prices actually paid to consumer segments
and arrival times. In particular, the result relies on a
reflection principle that establishes that a policy and
its time reflection are revenue equivalent.
Although one may restrict attention to cyclic poli-

cies with bounded length, the number of potential
price cycles is exponentially large, bringing to the

foreground the question of how to compute opti-
mal pricing policies. We develop a novel dynamic
programming approach for the problem. Leveraging
the above results on the cycle length bound and
the underlying structure of the problem through the
geometry of the effective price tables, we develop
an algorithm to compute an optimal policy that is
polynomial in the maximum willingness to wait and
linear in the number of prices the firm can use.
This approach is based on a dynamic program that
uses a novel state and action space, which enables
one to solve for an optimal policy recursively. This
approach is general, and we show how it extends to
the case of a finite horizon with nonstationary market
size parameters and willingness-to-pay distributions,
where customers may have a uniform cost of waiting.
We also study the structure of optimal policies.

Given the attention that monotone cyclic polices have
received in the literature (more on that in the review
below), we study this subclass of policies in more
detail. For this subclass of policies, we show that one
may further restrict the length of cycles without loss
of revenue. However, the class of monotone cyclic
policies is, in general, suboptimal. We derive a class
of problems in which they will always be suboptimal
and show that they can yield arbitrarily poor per-
formance compared to an unrestricted optimal pol-
icy. Optimal policies, in general, have a rich structure.
In particular, we show that if the pricing policy cycle
is relatively long (the period is close to twice the
maximum willingness to wait), then the lowest price
should be offered at the end of a cycle and the second
lowest price should be offered halfway to the end of
the cycle. We also show numerically that the optimal
policy often takes the form of nested sales, where the
firm offers small sales often, medium-sized sales less
often, and its largest sale only once per selling season.
Finally, we show that one may apply all the results

above to the problem of pricing for a pool of repeat
consumers who may stockpile the item, a common
problem encountered, for example, by grocery stores.
In particular, we establish a fundamental connection
between the problem of pricing for consumers with
one-time purchases who time their purchase over a
window and that of pricing for repeat consumers who
may stockpile the product. We first analyze the stock-
piling problem faced by consumers given a sequence
of prices. We establish, through a proper account-
ing scheme from prices to units consumed, that in
an optimal stockpiling policy, the effective price for
a potential unit to be consumed in a given period is
the minimum of the past prices over a window of
length driven by the storage capacity. Based on this
result, the firm’s problem can be shown to be, roughly
speaking, the mirror image of the problem with one-
time purchases (with proper parameters). We then
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establish that the two problems admit the same value
and that an optimal policy for one problem is also
optimal for the other one. In other words, the two
problems are essentially equivalent.
Related Literature. How to optimally set prices over

time given that consumers strategically time their
purchases is a classical question in economics (see,
e.g., Coase 1972, Stokey 1979, Conlisk et al. 1984,
Besanko and Winston 1990, Sobel 1991) and one
that has received significant attention in the rev-
enue management and dynamic pricing community;
see the recent reviews by Shen and Su (2007) and
Aviv et al. (2011).
When consumers are strategic, various considera-

tions come into play in their purchasing decisions,
including the future prices, the evolution of val-
uations, and availability of the product. Aviv and
Pazgal (2008) study dynamic pricing with capacity
constraints in the presence of strategic customers.
They illustrate the extent of revenue deterioration one
may experience if one ignores the presence of strategic
customers. Su (2007) finds that in a setting with lim-
ited inventory, both markdown and markup policies
can be optimal depending on the problem instance.
The paper by Ahn et al. (2007) studies joint pric-
ing and manufacturing decisions when demand in
a given period is a function of the price in multi-
ple periods. Our model also possesses the latter fea-
ture, and our analysis, like their work, also exploits
the regeneration of the system (or system reset) and
the policy decomposition that follows. Our work and
their work, however, deal with fairly different prob-
lems (we do not study manufacturing decisions) and,
overall, the techniques we develop are different from
theirs. Borgs et al. (2014), motivated by the question
of how to sell online services, consider how to set
prices to extract revenue while guaranteeing service
availability to all customers willing to pay the price
set by the firm. Their model also assumes consumers
arrive over time and have windows of interest, but
their focus is on handling time-varying service capac-
ity constraints. Deb (2010) and Garrett (2011) capture
the impact of customers’ valuations evolving stochas-
tically. In particular, Garrett (2011) shows that stochas-
tic valuations can drive the optimal price path to be
nonmonotone.
Our work takes a more fundamental starting point,

attempting to isolate and capture the impact of a het-
erogeneous population on the optimal dynamic pric-
ing policy, absent any other considerations. In this
sense, our work builds upon the classical papers on
intertemporal price discrimination. Stokey (1979, 1981)
shows that a firm facing a heterogeneous population
of customers can maximize revenue by either using a
sequence of decreasing prices or by offering a single

constant price, depending on the distribution of cus-
tomers’ valuations and the firm’s ability to commit to
a price path.
The paper that is most closely related to our work

is by Conlisk et al. (1984), who show that if a new
cohort of consumers arrives at every period, then the
firm’s optimal strategy is to use a cyclic pricing pol-
icy. In their model, a given consumer valuation can
take one of two values —low or high—and customers
may stay in the system forever. The paper shows the
interesting phenomenon that seasonal monotone pric-
ing arises naturally in stationary models as a result
of the firm performing intertemporal price discrimi-
nation. The firm sells only to high-value consumers
most periods but sells to low-value consumers as soon
as enough of them accumulate in the system. The
key differences in the present paper are as follows:
(i) On the firm side, the firm commits to future prices,
and maximizes finite horizon or long-term average
revenues. (ii) On the demand side, there are infinitely
many customers types (as opposed to two) that differ
along valuations and the time they may spend in the
system, and these do not discount future rewards. We
show in the present paper that, as soon as one departs
from the assumptions of Conlisk et al. (1984), there
is no reason for monotone cyclic policies to be opti-
mal in general, and the rich price dynamics observed
in practice with multiple sales levels being offered at
different times may be rationalized. Furthermore, we
show that under the present model, the problem is
equivalent to that of pricing for customers who stock-
pile, unifying settings where customers time their
purchases.
In comparison to Board (2008), who also focuses on

a setting with price commitment, the present model
does not include discounting but can be seen as
allowing for a richer description of customers since
types are now three-dimensional: time of arrival to
the system, patience level, and willingness to pay.
In contrast, in Board (2008), customers were fully
characterized by their arrival times and their will-
ingness to pay. This additional dimension drives the
cyclic pricing structure we derive (rich cycles are
observed even under stationary demand) as opposed
to Board (2008), where cyclic pricing follows from
cyclic demand patterns.
In §6, we study the problem of how to do intertem-

poral pricing in the presence of consumers who stock-
pile the firm’s goods. Two of the early papers on this
topic are by Blattberg et al. (1981) and Jeuland and
Narasimhan (1985), who show how firms can price
discriminate between consumers with high and low
holding costs by using dynamic pricing. In recent
work, Su (2010) shows that, in a rational expectations
model, the firm should use recurring promotions
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when customers who shop frequently are willing to
pay more than occasional shoppers.
On the empirical side, Nair (2007) estimates a

model of strategic purchase timing behavior in the
context of video games, and recent work by Li et al.
(2014) estimates the extent to which consumers are
strategic in timing their purchases in the context of
airline pricing. Pesendorfer (2002) and Hendel and
Nevo (2006, 2013) study pricing of items in supermar-
kets, and estimate demand elasticity, accounting for
demand accumulation, showing that such an effect
is significant. The class of models we consider in §6
includes the demand model estimated in the latter
paper in the absence of competition, and the class of
models presented in §2 includes the perfect foresight
model of Li et al. (2014).
Proofs. The proofs of Lemmas 1, 2 and 3; Theo-

rems 1, 2, and 5; and Proposition 1 are presented
in the appendix. The remaining proofs are available
in the online supplemental appendix (available at
http://dx.doi.org/10.1287/mnsc.2014.2049).

2. Model
We consider a monopolist facing a multi-period
single-product pricing problem. Customers arrive
with unit demand and are characterized by their val-
uation for the product v 2 601 V̄ 7 as well as their will-
ingness to wait w 2 80111 0 0 0 1S9 for some V̄ 2✓+ and
S 2 �. Customers are assumed infinitesimal and, in
each period, the mass of the incoming customer pop-
ulation with patience w is given by Éw. For each
patience level w, the cumulative distribution of values
is given by Fw4 · 5. In other words, the demand stream
is stationary. We do not impose any assumptions on
the demand model 8Éw1 Fw4 · 59w=010001S . In particular, the
correlation between the customers’ valuation for the
product and willingness to wait is arbitrary. We con-
sider a deterministic flow of customers, so that in every
period t = 1121 0 0 0 1 the mass of customers arriving
with patience w and valuation below or equal to v is
exactly ÉwFw4v5.
We let D denote the set of feasible prices avail-

able to the firm, which we assume to be an arbitrary
nonempty closed subset of 601 V̄ 7. The firm may select
any pricing sequence p= 8pt9t2� with elements in D,
and we assume that when it selects such a sequence,
it commits to it. We let P denote the set of all such
sequences.
Customers are assumed to be strategic and fully

anticipate the firm’s future prices, so a customer arriv-
ing in period t with a willingness to wait of w will
compare the net utility stemming from purchasing
in periods 8t1 t + 11 0 0 0 1 t + w9 and select the period
that yields the highest net utility and purchase in that
period only if the latter is nonnegative. Based on this

process, the customer will consider purchasing the
firm’s product only at the period that has the lowest
price in the window. For a given pricing policy p 2P,
we say that a customer that arrives in period t with
patience w faces an effective price of

et1w4p5= min
tkt+w

pk (1)

and will purchase the product only if her valuation is
above the effective price she encounters.
Given the consumer behavior outlined above and

a pricing policy p 2P, the long-run average revenue
collected by the firm is given by

R4p5= lim inf
T!à

1
T

TX

t=1

SX

w=0

Éwet1w4p5F̄w4et1w4p551 (2)

where F̄w4v5 = 1É limv0"v Fw4v05, which represents the
fraction of consumers with patience w that value the
product at least v.1 The firm solves a deterministic
problem. The firm’s objective is to select a sequence of
prices to commit to in order to maximize its long-run
average revenues; i.e., the firm solves

sup
p2P

R4p50 (3)

Discussion of the Assumptions. The present paper
focuses on a setting in which consumers have a time
window over which they consider purchasing, with
an arbitrary link between the length of the win-
dows and the willingness-to-pay distribution. It dif-
fers from the formulations of dynamic pricing prob-
lems in which the firm and/or the consumers use
exponential discounting to trade off present versus
future payoffs. It relates to models in which con-
sumers have a homogeneous patience level (see, e.g.,
Ahn et al. 2007 and Yin et al. 2008) or the so-called
deadline models (see, e.g., Mierendorff 2011, Pai and
Vohra 2013). Versions of such models have also been
estimated in recent empirical work (Li et al. 2014,
Hendel and Nevo 2013). While the model we con-
sider is of independent interest, the fact that it allows
to establish a fundamental connection between the
present problem and that of pricing to a pool of con-
sumers who stockpile (§6) lends it further appeal. We
also return in §7 to discuss how one may incorporate
some cost of waiting, where customers pay a waiting
cost that is linear on the number of periods they wait
before purchasing, relating to the model in Su (2007).
Another important assumption underlying our

results is the stationarity of the demand. This assump-
tion is also made in other papers in the literature,
including Conlisk et al. (1984), Su (2007), and Yin et al.

1 The objective above is defined with a lim inf since the limit may
be undefined for some pricing policies p.
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(2008). In §7, we show how one may consider nonsta-
tionary environments.
We highlight here that we focus on a setting in

which the firm commits to future prices upfront; i.e.,
we assume that the firm has commitment power.
Given that we will analyze different settings (long-run
average objective, finite horizon objective, nonstation-
ary demand, relationship to stockpiling problem), we
anchor ideas around the simpler commitment case.
One of the first papers on intertemporal price discrim-
ination, Stokey (1979), as well as several recent papers
by Board (2008), Deb (2010), Borgs et al. (2014), and
Garrett (2011) study optimal dynamic pricing from the
perspective of a monopolist who is able to commit
to future prices. As discussed in the literature review,
there is also a body of papers that analyze cases in
which firms do not have commitment power.

3. Optimal Pricing Policies
In this section, we show that the pricing problem (3)
admits an optimal solution. We show that one may
restrict attention to cyclic policies, and that the maxi-
mum length of cycles to consider can be characterized
only as function of the maximum willingness to wait.

3.1. Policy Decomposition and Optimality of
Cyclic Policies

A first important concept that we introduce is that
of resetting periods. Whenever prices are at their low-
est, the entire system resets in the sense that all cus-
tomers depart the system, either by making a pur-
chase or by deciding not to purchase at all.2 There is
no value for a strategic customer to stay in the system
past the date when the lowest price is being offered.
Resetting, however, also occurs when prices are not at
their lowest price overall. If the price offered today is
lower than all the prices to be used in the next S peri-
ods, the system also resets since no customer is will-
ing to wait more than S periods to make a purchase.
This occurs whenever the current price pt is equal to
the effective price faced by a customer of maximum
patience et1S4p5.

Definition 1. For any pricing policy p, let V 4p5✓�
be the set of periods such that pt = et1S4p5. We call the
elements in V 4p5 the reset periods of the system.

As a convention, we include 0 in the set V 4p5 since
the system is empty when the first customers arrive in
period t = 1. We now introduce the subclass of cyclic
pricing policies.

Definition 2. A pricing policy is cyclic if there
exists some integer L > 0 such that pt+L = pt for all
t 2�. The smallest L> 0 for which this holds is called
the cycle length Lp of policy p.

2 Without loss of generality, one may assume that customers behave
in this fashion.

With a slight abuse of notation, we represent
a cyclic policy p by the finite sequence of prices
p = 4p11 0 0 0 1pLp5. Whenever we discuss a policy
4p11 0 0 0 1pT 5, we are referring to the policy for which
this finite sequence of prices is repeated infinitely
often.
Given the above, one may now introduce the notion

of the components of an arbitrary pricing policy in P.
Purchasing patterns between a given pair of reset
periods can be analyzed independently from prices
offered before and after such reset periods since only
the customers arriving in between those two reset
periods are affected by these prices.

Definition 3. Let Vi4p5 be ith smallest element in
the set V 4p5. For any i 2�, we say the finite sequence
of prices Ci4p5= 4pVi4p5+11pVi4p5+21 0 0 0 1pVi+14p55 is the ith
component policy of p.

Lemma 1. Suppose the set of prices D is finite. Then,

for any policy p, the number of time periods elapsed

between any two reset periods is at most SóDó, i.e.,
max
i2�

8Vi+14p5ÉVi4p59 SóDó0
In other words, when there is a finite number of

prices, the component policies of an arbitrary policy p
cannot be arbitrarily long. The result stems from the
fact that whenever a period t is not a reset period,
there must exist a period within 8t + 11 0 0 0 1 t + S9
where the price offered is strictly less than pt . Repeat-
ing this process recursively will necessarily lead to
a reset period in finite time because prices may not
decrease below min8D9. The next result highlights the
connection between the performance of a policy and
its components and will be a key building block in
showing that the problem admits an optimal solution
as well as restricting the set of policies that one needs
to consider.

Lemma 2 (Policy Decomposition). Suppose the set

of prices D is finite. Then, the long-run average revenue

R4p5 generated by a pricing policy p is at most the supre-

mum of the long-run average revenues generated by each

of its component policies, i.e.,

R4p5 sup
i2�

R4Ci4p550 (4)

The idea behind the policy decomposition lemma is
as follows: The average revenue from a pricing policy
is nothing but a convex combination of all the aver-
age revenues obtained by the component policies. If
the average revenue obtained in between a pair of
reset periods is higher than in other periods, then one
may replace these other prices by the ones from the
component policy that yields higher average revenue.
The key implication of this result is that one may
restrict attention to the “best” component of a policy
and obtain the following result.
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Proposition 1. Suppose the set of prices D is finite.

Then, there exists a cyclic pricing policy with cycle length

at most SóDó that achieves the supremum in (3).

The proposition above has two immediate implica-
tions. The first one is showing that the supremum of
the price optimization problem given in Equation (3)
is attained. Therefore, the notion of an optimal pric-
ing policy is well defined. The second implication is
that there exists an optimal solution that is cyclic.
The result relies on the fact that the maximum time
elapsed between two reset periods is SóDó, and hence
the set of possible component policies is finite. This, in
turn, implies that the supremum in Equation (4) can
be replaced by a maximum over finitely many cyclic
component policies.
Proposition 1 enables one to restrict attention to

cyclic policies without loss of optimality.3 However,
the bound on the length of optimal cycles in Proposi-
tion 1 depends on the number of prices at the firm’s
disposal and may be a weak bound if the firm has
many prices at its disposal. We next establish a tight
bound that is independent of the number of prices.

3.2. Reflection Principle and Optimality of
Short Cyclic Policies

Effective Price Tables. We next analyze in further detail
the structure of the pricing problem. To do so, we
introduce the notion of effective price tables for cyclic
policies. One may represent the effective prices of a
cyclic policy of length T through a matrix of size
T ⇥ S, in which each entry corresponds to the effec-
tive price faced by a customer with patience the row
number and arriving in the period given by the col-
umn number.
Let us consider a numerical example with max-

imum willingness to wait S = 3, a cyclic policy
with length T = 8, and decreasing prices p =
4151121817141312115. The effective price table of the
policy p is presented in Table 1. The performance of
the policy may be easily computed given the table.
The Reflection Principle. We will now point to a gen-

eral relationship between a cyclic policy (p11 0 0 0 1pT 5
and its time reflection (pT 1 0 0 0 1p15. Consider the
time reflection of the above policy, which has cyclic
increasing prices pr = 4112131417181121155. The cor-
responding effective price table is depicted in Table 2.
Note that the effective price tables of policies p

and pr demonstrate very different customer behav-
ior. With the cyclic decreasing policy, all customers
wait for a lower price except for customers who are
completely impatient 4w = 05 or already arrive at a

3 Note that there always exist optimal noncyclic policies as well
since any two policies p and p0 that are identical except for finitely
many periods will yield the same long-run average revenue.

Table 1 Effective Price Table of a Cyclic Decreasing Policy p

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

w = 0 15 12 8 7 4 3 2 1

w = 1 12 8 7 4 3 2 1 1

w = 2 8 7 4 3 2 1 1 1

w = 3 7 4 3 2 1 1 1 1

Table 2 Effective Price Table of a Cyclic Increasing Policy pr

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

w = 0 1 2 3 4 7 8 12 15

w = 1 1 2 3 4 7 8 12 1

w = 2 1 2 3 4 7 8 1 1

w = 3 1 2 3 4 7 1 1 1

period when the lowest price is being offered. In con-
trast, the only customers who wait in the case of
the cyclic increasing policy, are the customers who
can wait until the price falls to its lowest value
4p= 15; everyone else either purchases at their arrival
period or does not purchase at all. However, even
though the pricing policies lead to very different con-
sumer behavior, they yield identical revenue. This
can be observed by counting the number of times
each effective price appears for each value of w. For
both pricing policies, the effective price of 15 appears
only for w = 0 and appears only once; the effective
price of 12 appears only for w = 0 and w = 1 and
appears only once for each of these values, and so on.
Cyclic decreasing policies and cyclic increasing poli-
cies appear at first brush to be very different policies
and do indeed lead to different purchasing patterns;
however they are in fact revenue equivalent. This is a
general result that is not restricted to monotone cyclic
policies that we formalize below.

Lemma 3 (Reflection). A cyclic pricing policy p =
4p11 0 0 0 1pT 5 and its time reflection pr = 4pT 1 0 0 0 1p15 yield
the same revenue, i.e., R4p5=R4pr 5.

The proof of the result resides in extending and
formalizing the informal counting argument above.
In particular, the following relationship holds for all
t and w,

et1w4p5=min8et1wÉ14p51 et+11wÉ14p590 (5)

That is, the effective price faced by a customer that
arrives at time t with willingness to wait w is the
lowest between the effective prices of a customer that
arrives at the same period but is willing to wait only
w É 1, and someone who arrives one period later
and is willing to wait only w É 1. Starting from the
fact that 8et104p59t=110001T and 8et104pr 59t=110001T are reflec-
tions of each other, one can use Equation (5) recur-
sively to show that for each value of w from 1 to S,
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8et1w4p59t=110001T and 8et1w4pr 59t=110001T contain exactly the
same elements. We note that the result above relies in
a critical fashion on the assumption of stationarity of
demand.
We are now in a position to state one of our main

results.

Theorem 1. Suppose the set of prices D is finite or

that Fw4 · 5 is Lipschitz continuous for all w = 01 0 0 0 1S.
Then, there exists an optimal cyclic pricing policy with

cycle length at most 2S.

A priori, it is not clear what drives the length of an
optimal cycle. Theorem 1 states that the only cycles
that need to be considered are short, in the sense
that they need not exceed twice the maximum will-
ingness to wait. When the set of prices is finite, the
result can be obtained using the following argument.
From the policy decomposition lemma, we immedi-
ately obtain that the lowest price should be used only
once per pricing cycle in the shortest optimal cyclic
policy. Less obviously, the same lemma also implies
that the second-lowest price should be used only up
to S periods before the lowest price is used. The
key idea in the proof is to use the same logic on
the reflected policy (which yields the same long-run
revenues by Lemma 3). Doing so, one obtains that
the second-lowest price should be used only up to S
periods after the lowest point. If the optimal policy
had length longer than 2S, there would always be an
option to further decompose the policy or its reflec-
tion without decreasing long-run average revenues. If
the set of prices is closed but not finite and the cumu-
lative distribution of values is Lipschitz continuous,
we obtain the same result by finding a sequence of
policies with cycle length up to 2S that rely only on
finitely many prices such that the revenue of these
policies converge to the revenue of the optimal policy.
The proof of the result above has an interesting

structural implication for optimal policies. By ensur-
ing that the second-lowest price does not appear more
than S periods after or before the second-lowest price,
it guarantees that the second-lowest price will be used
roughly halfway through the selling season when the
optimal policy is approximately 2S periods long. This
idea is made precise in Proposition 4 in §5.
Furthermore, the bound above is sharp in the sense

that for any S, there are instances with maximum
willingness to wait S in which all cycles with length
strictly lower than 2S are suboptimal. An instance of
the problem is defined by the nonempty closed set
of feasible prices D ⇢ 601 V̄ 7, the maximum patience
level S in the set of nonnegative integers, the segment
sizes 8Éw9w=010001S in ✓S+1

+ , the set of willingness-to-pay
distributions 8Fw4 · 59w=010001S+1 in the set of nondecreas-
ing and right-continuous mappings from 601 V̄ 7 into
60117 with Fw405 = 0 and Fw4V̄ 5 = 1. We let I denote
the set of all possible instances.

Proposition 2. For any S, there exists an instance of

the problem in I with maximum willingness to wait S for

which the shortest optimal cycle is 2S periods long.

As we see next, Theorem 1 also enables one to con-
struct an efficient algorithm to find an optimal policy.

4. Computing Optimal Cycles:
A Geometric Approach

Theorem 1 established existence of an optimal cyclic
pricing policy with length at most 2S. While this
implies that cycles under consideration can be fairly
short, the number of such cycles is still very large (it is
exponential in S when the price set is finite). In this
section, we show, by leveraging the structure of the
problem at hand, that the problem of finding an opti-
mal pricing policy is tractable, and we construct an
algorithm that efficiently finds an optimal cycle.
A Geometric View of the Effective Price Table. Our

approach to the problem is centered around the geom-
etry of the effective price table. Recall that for a cyclic
policy p with length T , the effective prices table is
a T ⇥ S table with the effective prices et1w4p5 for
times t = 11 0 0 0 1T and w = 01 0 0 0 1S. Since the policy
is cyclic, we can assume without loss of generality
that the smallest price is used in the last period, i.e.,
pT =min1kT pk. We use the notation p4k5 to represent
the kth lowest price used in policy p and T4k5 to rep-
resent the first period in which p4k5 is used. Therefore,
our convention that pT is the lowest price in the cycle
is equivalent to pT = p415 or T415 = T . The first obser-
vation about the effective price table is that the set of
elements where the effective price is p415 forms a trian-
gle, as can be seen in Figure 1. That is, for customers
with w = 0, only the ones that arrive in period t = T
in the cycle are able to purchase at the lowest price.
Among the ones with w= 1, customers who arrive in
periods t = T É 1 or t = T are able to buy at the low-
est price, and so on. This triangle would have its left
side truncated if p is a cyclic policy with length T  S
(leading to a trapezoid).
The set of effective prices corresponding to the

second-lowest price p425 may also be described geo-
metrically. It also takes the form of a triangle, but it is
potentially truncated on both the left and right side,
as illustrated by the striped object in Figure 2. It will
be truncated on the right side if customers with high
patience have access to the lowest price and hence
belong to the set of customers who purchase at the
end of the cycle. One may continue to represent the
set of effective prices corresponding to the kth lowest
price recursively.
A Dynamic Programming Recursion. The central idea

in building our algorithm is as follows: no customer
will ever skip over a low price to buy at a higher
one. Recall that T425 is the first period when the price
is equal to p425. Some customers that arrive between
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Figure 1 (Color online) Set of Effective Prices Equal to p415 in the
Effective Price Table

w = 0

t = 1 t = T
p(1)

w = S

t = 1 and t = T425 might be patient enough to wait
until the lowest price p415. For these very patient cus-
tomers, the prices offered in periods from t = 1 up
to T415 É 1 are irrelevant. For everyone else arriving
between t = 1 and t = T425, all prices offered after t =
T425 are irrelevant. The prices being offered after T425
are either equal to or higher than p425 or too far into
the future. Conditionally on p425 being the second low-
est price and its position T425, all prices between t = 1
and t = T425É1 may be computed independently from
prices between t = T425 + 1 and t = T415 É 1.
The latter observation is the key step to formulate a

dynamic programming recursion for the problem. The
state space of this dynamic program is an unusual one
and is best understood geometrically. If one ignores
all the customers that are able to buy at the lowest
price in the cycle (the triangle on the right in Figure 1),
one is left with an effective price table as depicted in
Figure 3.
Such a table takes either the shape of a triangle, if

T É 1  S, or the shape of a trapezoid, as depicted, if
T É1> S. The number of elements at roww= 0 is T É 1
since only the customers who arrive in period T are
able to purchase at the lowest price pT and therefore
are part of the removed triangle.

Figure 2 (Color online) Set of Effective Prices Equal to p415 and p425 in
the Effective Price Table

p(2) p(1)

t = 1 t = T

w = 0

w = S

Figure 3 (Color online) Effective Price Table After Customers Who
Purchase at pT Are Removed

w = 0
t = 1 t = T – 1

w = S

We have argued that conditional on a period T425
for the second- lowest price and its price p425, all the
prices before T425 and after T425 may be selected inde-
pendently (subject to a lower bound on prices). This
idea gives rise to the dynamic programming recur-
sion. The key geometric insight that allows us to con-
struct the state space can be gleaned from Figure 4:
once one removes the customers that purchase at the
second-lowest price p425, we are left with two prob-
lems that are identical in structure to the original one
but smaller in size. The state space therefore is com-
posed of a pair 4n1p5, where n denotes the number
of periods being considered and p represents the low-
est price that can be used during those periods. We
define a value function Wn4p5 to represent the max-
imum revenue that can be obtained over n periods
assuming that the prices being offered over these peri-
ods is at least p and that, in period n+1, a price lower
than p will be offered. Formally, the value function
may be represented by

Wn4p5= max
p110001pn2D

min8nÉ11S9X

w=0

Éw

nÉwX

t=1

et1w4p5F̄w4et1w4p55

s.t. pi � p for all i 2 811 0 0 0 1n90

Figure 4 (Color online) Geometric View of the Dynamic Programming
Recursion

t = 1 t = T

w = 0
p(2) = q

w = S

t = k
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Using the observation that customers do not skip over
low prices to buy at a higher one later, we obtain
that the value function Wn4p5 satisfies the following
Bellman equation:

Wn4p5 = max
k28110001n9
p02D2p0�p

⇢ SX

w=0

tn1k1wÉwp
0F̄w4p

05

+WkÉ14p
05+WnÉk4p

05
�
1 n� 11p 2D1 (6)

where W04p5= 0, and tn1k1w counts the number of peri-
ods between 1 and n in which the customers with
patience w will purchase at the lowest price in the
interval if such price is offered in period k. For a given
n and k, the collection of tn1k1w for all w is repre-
sented by the shaded area in the middle of Figure 4.
Mathematically,

tn1k1w = 4min8k1nÉw9Émax811kÉw9+ 15+1

where x+ = max8x109. Once one has computed the
value of Wn4p5 for a given n and all p 2 D, one
may determine the optimal policy of length n+ 1 by
adding the lowest price in the cycle at position T =
n + 1 (see Figure 1). The revenue obtained over the
first T periods by the best policy of cycle length T is
then

W ⇤
T =max

p2D

⇢ SX

w=0

min8w+ 11T 9ÉwpF̄w4p5+WTÉ14p5

�
0 (7)

Computing an Optimal Policy. Since by Theorem 1
there exits an optimal policy that is cyclic with length
at most 2S, the optimal pricing policy can be deter-
mined by computing the average per-period revenue
of an optimal policy for each T from 1 to 2S, i.e.,

W ⇤ = max
T281100012S9

W ⇤
T

T
1 (8)

leading to Theorem 2.

Theorem 2. If the set of prices D is finite, then an opti-

mal pricing policy can be computed in time O4óDóS25.

In other words, despite the fact that the number of
cycles of length up to 2S is exponential in S, an opti-
mal policy may be determined in polynomial time in
S by exploiting the underlying structure the problem.
When the set of available prices D is not finite, one

may still leverage the recursion above. If the will-
ingness to pay distributions are Lipschitz, one may
discretize the set D and use the regularity of the dis-
tributions to find a near-optimal policy efficiently. For
any ò> 0, we say that a pricing policy p0 is ò-optimal
if R4p05� supp2P R4p5É ò.

Theorem 3. Suppose the willingness to pay distribu-

tions Fw4 · 5, w = 01 0 0 0 1S, are Lipschitz with constant L
and let ‚ = PS

w=0 Éw. For any closed set of prices D ✓
601 V̄ 7, an ò-optimal pricing policy can be computed in

time O4‚ V̄ LS2/ò5.

Theorems 2 and 3 establish that the problem of find-
ing optimal (for finite price sets) or ò-optimal pricing
policies is tractable. In the next section, we use these
results to compute optimal prices in some numerical
instances, and further explore the structure of optimal
cycles for intertemporal price discrimination.

5. Structure of Optimal Pricing Cycles
We first highlight that in the present context, the use
of different prices over time is driven by the fact that
customers with different patience levels have different
willingness-to-pay distributions.

Proposition 3. Suppose customers’ valuations distri-

butions are independent of their patience level, i.e., there

exists some cumulative distribution function G4 · 5 such

that Fw4 · 5=G4 · 5 for all w = 01 0 0 0 1S. Then, an optimal

policy for the firm is to offer a constant price over time.

5.1. Optimal Cycle Structure
In Figure 5, we report the optimal cycle obtained
through the dynamic programming recursion for two
instances. Panels (a) and (b) correspond to a case in
which S = 3 and consumers have deterministic will-
ingness to pay, with

4Éw1vw5= 4115Éw5 for w= 01112130 (9)

In other words, in such an instance, all customer
segments have equal size, the customers within a
patience segment are all identical in terms of valua-
tion, and more patient customers have lower valua-
tions for the product. In addition, we assume the set
of available prices is D= 811 0 0 0 159. Panels (c) and (d)
correspond to a case in which S = 4 and consumers
have deterministic willingness to pay, with

vw=5Éw for w=0111213141 and

É0=41 Éw=1 for w=11213 and É4=30
(10)

In addition, the price set is 811 0 0 0 159. Focusing first on
the case S = 3 and in particular panel (b), we observe
in this case that it is strictly suboptimal to use any
cyclic policy with length strictly below 2S = 6. This
complements the result of Proposition 2 that high-
lighted that in general, it might be necessary to use
cycles of length 2S to achieve optimality. As a matter
of fact, panel (b) further illustrates that one may limit
revenue collection by a significant amount by restrict-
ing attention to shorter cycles.
In Figure 6, we depict the purchase pattern along

an optimal cycle for the case S = 4. Let us focus first
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Figure 5 (Color online) Optimal Cycle Structure
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Notes. For the specifications with S = 3 given by (9), panel (a) displays prices of an optimal policy with cycle length 6 and panel (b) depicts the optimal

revenues one may achieve as a function of the cycle length. For the specifications with S= 4 given by (10), panel (c) displays prices of an optimal policy with

cycle length 8 and panel (b) depicts the optimal revenues one may achieve as a function of the cycle length.

on impatient customers with w = 0. All these cus-
tomers see prices p  v0 = 5, and hence all of them
purchase the product upon their arrival (four cus-
tomers per period). For customers with w = 1 (one
per period), a customer arriving in the first period
postpones his purchasing decision to second period
because he would face a lower price there (and p2 
v1 = 4). In period 2, two customers with w = 1 pur-
chase: one who arrived in period 1 and one who
arrived in period 2. And so on. As we observe, in this
optimal cycle, all customers with patience w= 0, and
w = 1 end up purchasing; customers with patience
w = 2 only purchase in periods 4 and 8, and six out

Figure 6 Sales Pattern Through an Optimal Cycle
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w = 3
w = 4

Notes. For the specifications with S= 4 given by (10), the figure depicts the

number of items purchased during each period of a cycle, and the composi-

tion of customers purchasing as a function of patience level.

of the eight customers arriving in a cycle purchase;
only four customers with patience w= 3 (out of eight)
and 15 customers with patience w= 4 (out of 25) pur-
chase, and those do so at the lowest price in period 8.

Nested Sales. Both panels (a) and (c) in Figure 5
depict optimal policies. We observe that the pricing
structure within cycles is in general nonmonotone. In
particular, optimal polices tend to alternate between
sales and the full price (targeting the impatient high-
value customers), and the sales are offered with mul-
tiple levels of discount depth. The lowest price is
offered at the end of the cycle, and the second-lowest
price in a cycle is offered exactly in the middle of
the cycle (in period 3 for panel (a) and period 4 for
panel (c)). The latter observation is more general in
the following sense.

Proposition 4 (Nested Sales). Suppose the shortest

cyclic policy that solves Equation (3) has a cycle of length T
that satisfies S+1 T  2S. Then, there exists an optimal

policy with cycle length T in which the lowest price appears

last in the cycle and the second-lowest price belongs to

8T É S1 0 0 0 1S9.

In other words, partial discounts will be found in
the middle of a cycle when an optimal cycle is long
in the sense that it is close to 2S periods long. This
phenomenon seems to repeat itself between two dis-
counts, as observed in periods 2 and 6 in panel (c).
Conlisk et al. (1984) first noted that seasonal (cyclic)
pricing variations would emerge in a setting with sta-
tionary demand when the firm was performing some

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
s.o

rg
 b

y 
[2

16
.1

65
.9

5.
71

] o
n 

19
 O

ct
ob

er
 2

01
5,

 a
t 0

7:
58

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Besbes and Lobel: Intertemporal Price Discrimination
102 Management Science 61(1), pp. 92–110, © 2015 INFORMS

form of intertemporal price discrimination. However,
in their model with no commitment power, two val-
uations, discounting, and consumers who may stay
in the system forever, they find that such cycles take
the form of cyclic monotone policies. In the present
setting with heterogeneity over time windows, a con-
tinuum of valuations, commitment power, and the
absence of discounting for consumers, we find that
optimal policies often take the form of nested sales,
where the firm offers small sales spread out through a
selling season, a larger mid-season sale, and its largest
sale at the end of a selling season.
Policy Sensitivity to Mix of Customer Classes. To bet-

ter understand the impact of the mix of customer
patience levels on the structure of the optimal pol-
icy, we re-solved the problem from the beginning of
this section with S = 4 (the one that has its solution
depicted in panel (c) of Figure 5) but with a different
É0 or a different ÉS .
We found that the minimum length of an optimal

policy evolves nonmonotonically with both É0 and ÉS .
With few impatient customers (É0 from 0 to 2), the
optimal policy has a duration of five periods. With É0
equal to 3 or 4, the duration increases to 8, as depicted
in panel (c) of Figure 5. As we increase the number
of impatient customers after that, however, the dura-
tion of the optimal policy decreases to 4 (É0 equal to 5
or 6), 2 (É0 = 7), and eventually becomes stationary if
É0 � 8. As the impatient segment of the population
begins to dominate the market, the optimal policy nat-
urally becomes increasingly static.
One should note that in general (beyond the cur-

rent specific example), there is no reason why the
optimal policy would use a single price when É0 is
very high. When the price set is a continuum and
the willingness-to-pay distributions are continuous, it
might be worthwhile to deviate from time to time
from the optimal price for targeting impatient cus-
tomers to capture a fraction of the patient customers.
However, one expects, of course, that as É0 increases,
those price deviations would become ever smaller.
In the numerical experiments, the optimal policy

was only four periods long if É4 is small (É4 is less
than 2). With É4 = 3, the optimal policy grows to eight
periods long, but this length is reduced to six if É4 = 4.
With É4 � 5, the optimal policy becomes five periods
long. In contrast to the large É0 case, the policy does
not become increasingly stationary as we increase the
fraction of patient customers. In fact, if ÉS is large, the
optimal policy will typically be S + 1 periods long,
as we need to offer prices targeting patient customers
only once every S+ 1 periods.
For all parameters tested, the optimal policy had a

nested sales structure, except in the cases where the
optimal policy was too short to display such struc-
ture (period equal to 1 or 2) and in the case with no
impatient customers (É0 = 0).

The Value Induced by the Presence of Patient Cus-
tomers. In the present setting, the fact that customers
are patient induces the firm to consider more com-
plex pricing strategies, but also allows the firm to con-
duct more targeted pricing. Consider a problem with
a market with parameters 84Éw1 Fw4 · 552 w = 01 0 0 0 1S9.
Suppose instead that the firm faced the same mix of
customers, except that all of them would be impatient.
In such a case, this is equivalent to the firm facing a
market with parameters 8É̃01G04 · 59, where

É̃0 =
SX

w=0

Éw1 G04 · 5=
1
É̃0

SX

w=0

ÉwFw4 · 50

Now, an optimal policy for the latter setting is a fixed
price that maximizes pḠ04p5. Such a policy is feasi-
ble in the original problem (in which customers have
different patience levels) and yields the same rev-
enues. We deduce that the firm can necessarily gar-
ner at least as much revenues when customers are
patient. In other words, the fact that customers are
patient allows the firm to intertemporally price dis-
criminate customers who have different willingness-
to-pay distributions.
In the present setting, it is also easy to see that if

the firm ignores the fact that customers are patient,
then the losses are exactly equal to the performance
gap between an optimal cycle of problem (3) and the
best static price. This gap can be arbitrarily large (this
follows from Proposition 7 below) and stems from
misspecification of the customer model.

5.2. The Subclass of Monotone Cyclic Policies
We now study monotone cyclic policies. In particular,
we bound their cycle length, characterize conditions
under which they are strictly suboptimal, and analyze
the revenue loss for a firm that restricts itself to such
policies. The first result bounds the length of optimal
policies within the set of all cyclic monotone policies.

Proposition 5. For any cyclic policy that is monotone

over a cycle, there exists a cyclic monotone policy with cycle

length at most S+ 1 that yields at least as much revenue.

In other words, when focusing on cyclic monotone
policies, it is sufficient to focus on policies of length
at most S + 1. Longer monotone cycles would neces-
sarily have multiple reset periods within each cycle,
which is unnecessary by the policy decomposition
lemma.
Exploring the structure of a cycle in the most gen-

eral case is difficult given the combinatorial nature
of the problem. However, one may further refine the
analysis in special cases of interest. Next, we focus
on the class of problems in which consumers have a
deterministic patience-dependent willingness to pay.
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Assumption 1. Consumers with patience level w have

a willingness to pay of vw and v0 >v1 > · · ·>vS > 0.
Furthermore, the set of available prices D includes

8v01v11 0 0 0 1vS9.

Assumption 1 also imposes that consumers with
lower patience have higher willingness to pay, which
is natural in many settings. We define

R̄4p5=
SX

w=0

Éwp41É Fw4p55

as the single-price revenue per period when the firm
uses price p throughout.

Proposition 6. Suppose Assumption 1 holds. Suppose

that R̄4vi5 is nonmonotone in i 2 801 0 0 0 1S9 and let j =
min8i 2 811 0 0 0 1S92 R̄4viÉ15 > R̄4vi59. Then, an optimal

cyclic policy either contains at most j + 1 periods or is

cyclic nonmonotone.

Proposition 6 excludes the optimality of monotone
policies that are longer than j + 1. For example, if
R̄4v05 > R̄4v15, corresponding to a case in which the
seller prefers to sell only to the impatient customers
than to use a price that sells to both impatient and
those with patience w = 1, then an optimal policy
either contains at most two prices or is nonmonotone.
We next illustrate that monotone policies might in

general leave significant revenues on the table; con-
sider the following example with maximum patience
level S = 7 and three segments of customers: impa-
tient, moderately patient, and very patient. In par-
ticular, suppose 4É01v05 = 40011105, 4É31v35 = 4005125,
4É71v75= 4210055, and Éw = 0 for w= 112131516. Note
that this specification satisfies Assumption 1. Fig-
ure 7 depicts an optimal policy (top panel) as well

Figure 7 (Color online) Monotone vs. Optimal Policies
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Note. The top panel displays prices associated with an optimal cycle and the bottom panel depicts the best monotone cyclic policy.

as the best policy among monotone cyclic policies
(bottom panel). The ratio of the performance of the
latter compared to the optimal policy is of 87053%
in this instance. The example illustrates the need for
nested sales for better price discrimination. In the
example above, the natural choice of price to use
for periods 1–3 is v0; at period 4, the firm has to
decide whether to target customers with intermediate
patience, but if restricted to monotone policies, this
switch in price implies that the firm will not be able
to perfectly target impatient customers until the end
of a cycle. For any candidate monotone policy, a sim-
ilar trade-off will be present, i.e., the firm will have
to decide whether to set a high price that will cause
a significant portion of the customers not to purchase
or to set a low one that will cause the firm to imper-
fectly target a significant segment of the customers
until the end of the cycle. In contrast, a policy that is
unconstrained does not face this trade-off. The opti-
mal policy depicted on the top panel is able to tar-
get customers with moderate patience in the fourth
period of a cycle while returning to target the impa-
tient high-value customers in the next period.
As a matter of fact, we next show that cyclic mono-

tone policies may yield arbitrary poor performance.

Proposition 7. Let M denote the set of cyclic policies

that are monotone over a cycle. Then,

inf
8D1S18Éw1 Fw9w=010001S 92I

supp2MR4p5

supp2P R4p5
= 00 (11)

In other words, cyclic monotone policies may not
guarantee a uniform finite fraction of revenues.
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6. Intertemporal Pricing with
Consumer Stockpiling

In the present section, we show that there is a close
relationship between the problem analyzed in the pre-
vious sections (problem (3)) and that of pricing for a
pool of heterogeneous consumers who may stockpile
units of the product. In particular, we demonstrate
that the framework developed, the effective price
table geometry and the results that followed may be
applied to another fundamental problem, that of pric-
ing to a heterogeneous population of consumers who
may stockpile the product. The latter problem has
been studied in the economics and operations liter-
atures and we refer the reader to Su (2010) and the
references therein for further background.
Model of Consumer Stockpiling. We consider a

monopolist facing a multi-period single-product pric-
ing problem. The customer population is assumed
to be present throughout, with unit demand per
period. These are characterized by their valuation
for the product v 2 601 V̄ 7, which is constant from
period to period, as well as their storage capacity
c 2 80111 0 0 0 1C9, for some V̄ 2 ✓+ and C 2 �. Cus-
tomers are assumed infinitesimal and the mass of
the customer population with storage capacity c is
given by Éc. For each storage level c, the cumula-
tive distribution of values is given by Fc4 · 5. We do
not impose any assumptions on the demand model
8Éc1 Fc4 · 59c=010001C . In particular, the correlation between
the customers’ valuation for the product and the stor-
age capacity is arbitrary.
As earlier, we continue to let D denote the set of

feasible prices available to the firm, which we assume
to be an arbitrary nonempty closed subset of 601 V̄ 7.
The firm may select any pricing sequence p= 8pt9t2�
with elements in D. We continue to denote by P the
set of all such sequences.
Customers are assumed to be able to fully antici-

pate the firm’s future pricing and may time their pur-
chases accordingly. In particular, consider a consumer
with valuation v and storage capacity c. Let yt denote
the number of units purchased in period t. A con-
sumer policy y consists of a purchasing sequence and
it is said to be feasible if

I0 = 01

It = ItÉ1 + yt É xt1 t � 11

xt = 188yt > 09[ 8ItÉ1 > 0991 t � 11

yt 2 8011121 0 0 0 1 c+ 191 It � 01 It  c1 t � 10

Here, xt denotes the consumption in period t, and It
denotes the inventory carried over from period t to
t+1. The expression for xt reflects the assumption that
consumption always takes place if a unit is available,

which is without loss of optimality for the consumers.
We let Yc denote the set of feasible policies for a con-
sumer with storage capacity c.
An individual consumer with valuation v and stor-

age capacity c maximizes her long-term average net
utility, i.e., solves

sup
y2Yc

lim inf
T!à

1
T

TX

t=1

4vxt É ptyt50 (12)

In turn, the firm seeks to maximize the long-run aver-
age revenues it collects.
Optimal Consumer Stockpiling. We first analyze the

consumer problem given a policy p.

Proposition 8. For any pricing sequence p, prob-

lem (12) admits an optimal solution and the optimal long-

run net utility is given by

lim inf
T!à

1
T

TX

t=1

4vÉ ẽt1 c4p55
+1

where ẽt1 c4p5 = min8ptÉc1ptÉc+11 0 0 0 1pt9. Furthermore,

there is an optimal policy such that consumption in period t
takes place if and only if v � ẽt1 c4p5, and the payment

that was made for the unit consumed in period t is

exactly ẽt1 c4p5.

The proof relies on a detailed accounting of cost
of a unit consumed in period t, the derivation of an
upper bound on the performance of any policy, and
the construction of a policy that achieves the bound.
Hence, we conclude that one may view the con-

sumption problem of a consumer with storage capac-
ity c in period t as one of facing an effective price
of ẽt1 c4p5. In other words, while in the problem of
one-time purchase with time windows studied in
the earlier sections, the effective price faced by con-
sumers was the minimum over a future time window,
when consumers stockpile, the effective price asso-
ciated with consumption in a given time period is
the minimum price over a past time window, and the
length of this time window is driven by the storage
capacity. As Table 3 shows, the effective price table
for stockpiling customer looks like the mirror image
of the effective price table for who time their one
time purchases. In particular, the effective prices now
satisfy ẽt1w4p5 = min8ẽt1wÉ14p51 ẽtÉ11wÉ14p59 instead of
Equation (5). As we will see, this connection enables
us to adapt the framework developed in the previous
section to this new setting.

Table 3 Effective Price Table for a Stockpiling Customer for a Given
Policy p

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

w = 0 1 2 3 4 7 8 12 15

w = 1 1 1 2 3 4 7 8 12

w = 2 1 1 1 2 3 4 7 8

w = 3 1 1 1 1 2 3 4 7
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Optimal Pricing Policies. As we explicitly lay out in
Proposition 8, it is possible to construct an optimal
policy such that consumption in period t takes place
if and only if v � ẽt1 c4p5, and the payment that was
made for the unit consumed in period t is exactly
ẽt1 c4p5. Any such policy is also optimal for any finite
time horizon assuming payments are deferred to con-
sumption times. We assume next that all consumers
use such policies.
We also assume that payment is effectively made

only when consumption occurs, which is without
loss of generality given the long-run average rev-
enue maximization objective. For a given pricing pol-
icy p 2P, given the consumers optimal policy for
stockpiling outline above and the associated effective
prices identified, the revenues collected by the firm
over the first T periods may be written as

TX

t=1

CX

w=0

Éc

Z V̄

0
ẽt1 c4p518v� ẽt1 c4p59dF 4v5

=
TX

t=1

CX

w=0

Écẽt1 c4p5F̄c4ẽt1 c4p550

Hence, the long-run revenue rate of the firm is given
by

R̃4p5= lim inf
T!à

1
T

TX

t=1

CX

c=0

Écẽt1 c4p5F̄c4ẽt1 c4p551 (13)

and the firm solves

sup
p2P

R̃4p50 (14)

Note that the expression for R̃4p5 is very similar
to that for R4p5 in (2) with the notion of effective
prices being different. One may develop a parallel
concept to that of reset periods that was defined in §3.
For any pricing policy, the set of periods such that
pt = ẽt1C4p5 may now also be considered to be “reset
periods.” In any such period, all customers of type c,
c= 01 0 0 0 1C, arrive with the same state of zero inven-
tory (assuming they always break ties by purchas-
ing at the period closest to the date of consumption).
In the same manner as earlier, the system decouples
from reset period to reset period. Using the policy
decomposition idea (as in Lemma 2), one may estab-
lish again that when the set of prices is finite, the pric-
ing problem (14) admits an optimal solution, and one
may restrict attention to cycles of length at most CóDó.
Theorem 4 (Equivalence). The problem of pricing

for consumers who stockpile with a population character-

ized by 84Éc1 Fc52 c = 01 0 0 0 1C9 (problem (14)) is equiv-

alent to the problem of pricing to a stream of consumers

who time their purchases over given time windows with

characteristics 84Éc1 Fc52 c= 01 0 0 0 1C9 (problem (3)) in the

following sense: both problems admit the same value func-

tion, and a cyclic policy that is optimal for one problem is

also optimal for the other one.

We prove the result below. Consider any cyclic
pricing policy p 2 P of length T , with cycle
4p11p21 0 0 0 1pT 5. Let pr denote its time reflection; it has
cycle elements 4pT 1 0 0 0 1p21p15. Consider the effective
price table 8et1 c4pr 52 1 t  T 10 c  C9 correspond-
ing to pr in the one-time purchase problem with time
windows and the effective price table 8ẽt1 c4p52 1 t 
T 10 c  C9 corresponding to p in the problem with
consumer stockpiling. Note that for any t1 c with 1
t  T 10 c  C, et1 c4pr 5= ẽTÉt+11 c4p5. In other words,
each table is exactly the time reflection (or mirror
image) of the other. This in particular implies that
R4pr 5= R̃4p5.
Using the reflection lemma (Lemma 3), one has that

R4pr 5= R4p5 and we deduce that, for any cyclic pol-
icy p, R4p5= R̃4p5. In other words, any cyclic policy
that was optimal for problem (3) is also optimal for
problem (14). É
Hence, the two problems are equivalent, and all the

results regarding the bound on cycles, the structure
of optimal policies, and the computation of optimal
policies that were derived in §§3–5 apply directly to
the problem of pricing for consumers who stockpile
with objective (12). In addition to the direct results
one obtains regarding the pricing policies that emerge
for this new problem, the connection between the two
fundamental problems established is also of indepen-
dent interest.

7. The Generalized Finite-Horizon
Case

In this section, we study a finite-horizon version of
our problem and, within this context, consider sev-
eral extensions of our model, including seasonality of
customer demand and customers suffering a disutility
from waiting to purchase a product.
Many products have obsolescence dates, such as

the date when a clothing line goes out of season or
when a technology product gets replaced by a newer
generation model. In such situations, a consumer that
arrives early in the selling season might have different
preferences from one that arrives later on. Such a con-
sumer might also be willing to wait for a lower price
but suffer disutility from it. This section demonstrates
that the dynamic programming approach developed
in §4 may be generalized to such situations.

7.1. The Finite-Horizon Model
We consider a finite-horizon model with time t = 11
0 0 0 1T . At period t, a mass of customers Ét1w arrives
with patience w, for each w = 01 0 0 0 1S. The fraction
of these customers that value the product at most v
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is given Ft1w4v5, for all v 2 601 V̄ 7. Customers are
assumed to have a uniform cost of waiting c � 0. That
is, a customer with valuation v and patience w that
arrives in period t and purchases in period t0 2 8t1 t+
11 0 0 0 1 t+w9 earns utility vÉpt0 É c4t0 É t5. A potential
customer who finds the current and future prices to
be too high will choose to depart the system imme-
diately without purchasing and will earn a net utility
of zero. For any given price policy p= 4p11p21 0 0 0 1pT 5,
the effective price faced by a consumer arriving in
period t with patience w is

êt1w4p5= min
tkt+w

pk + c4kÉ t50 (15)

If there are multiple minimizers in the equation
above, we assume the consumer breaks ties by buy-
ing according to the cheapest price. Let kt1w4p5 be the
index k that minimizes the equation above, i.e.,

kt1w4p5=maxargmin
tkt+w

pk + c4kÉ t51

where the max serves to break ties in favor of the
cheapest price. Then, the customer delay is given by

dt1w4p5= kt1w4p5É t

and represents how many periods a customer who
arrives at period t with patience w will choose to
wait for a lower price. That is, among the customers
who arrive at period t with patience w, the ones
with valuation below êt1w4p5 will not purchase and
the ones with valuation above or equal to êt1w4p5 will
buy at period t+ dt1w4p5. Then, the firm’s objective is
given by

RT 4p5=
TX

t=1

SX

w=0

Ét1wpt+dt1w4p5F̄t1w4êt1w4p551

where F̄t1w4v5= 1É limv0"v Ft1w4v05. We assume that the
set of prices D is a discretization of 601 V̄ 7, with dif-
ference „ between the prices such that c is a multiple
of „. The firm’s problem is how to optimize among
policies P =DT , i.e., supp2P RT 4p5.
Focusing on a finite-time horizon, the model we

study in this section generalizes the model from §2
in two ways. First, it allows for a (uniform) cost of
waiting for the customers. Second, it enables one to
capture situations where the customer profiles evolve
over the selling season, allowing for different mixes
of patience and valuations for customers who arrive
early versus customers who arrive near the end of
the selling horizon. We continue to study posted price
mechanisms in which the firm commits to all prices
in advance.

Figure 8 (Color online) Effective Prices Table of Generalized
Finite-Horizon Model

 = 0
 = 1  = Minimum 

 = 

7.2. Computing Optimal Policies
In this subsection, we show how to compute opti-
mal pricing policies for the generalized finite-horizon
model. In particular, we show that a technique similar
to the one developed in §4 applies to this problem.
Customers still buy according to effective prices in

the generalized finite-horizon model, with the only
difference being that the effective prices are modified
by the cost of waiting, as given by Equation (15). Con-
sider the effective price table and note that effective
prices satisfy

êt1w4p5=min8êt1wÉ14p51 êt+11wÉ14p5+ c90 (16)

We can apply the algorithmic techniques from §4
by taking the delay costs into account. Consider the
sequence of prices 8pk+ ck2 1 k T 9, and let t be the
index that minimizes the value of pk+ck. Then, given
the recursion in Equation (16), the set of customers
who find period t the most attractive to purchase will
form a (potentially truncated) triangle, as in the case
with no cost of waiting (see Figure 8).
Besides the modification of the effective prices to

take the cost of delay into account, the other major
difference in the algorithm for the generalized finite
horizon problem is that we can no longer assume
without loss of generality that a low price will be
used at the end of a cycle (the optimal policy might
not be cyclic in a finite-horizon problem). To accom-
modate this, we need to double the size of our state
space and consider the value of rectangular regions
in addition to the triangles and trapezoids introduced
in §4 (as shown in Figure 8, the price that divides
the set of customers may not be at the end of the
selling season). The value of a region of triangular
(or trapezoidal) shape starting from period m, ending
in period n, and restricted to prices above p + ci at
position i, is given by

Zm1n4p5= max
pm10001pn2D

min8nÉm1S9X

w=0

nÉwX

t=m

Ét1wpt+dt1w4p5F̄t1w4êt1w4p55

s.t. pi�p+ci for all i28m10001n91
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and the value of a rectangular region starting from
period m, ending in period n, and restricted to prices
above p, is given by

Z̃m1n4p5= max
pm10001pn2D

min8nÉm1S9X

w=0

nX

t=m

Ét1wpt+dt1w4p5F̄t1w4êt1w4p55

s.t. pi�p+ci for all i28m10001n90

When we construct the state space now, the price
constraint is on the delay-modified effective price.
The price p of the state space no longer represents a
real price but instead represents what price at a fic-
tional time 0 would impose a given constraint on the
delay-modified effective prices. Therefore, we need to
expand the set of price constraints in the state space to
8ÉcT 1ÉcT + „1 0 0 0 101„1 0 0 0 1 V̄ 9. For example, if the
lowest effective price in the entire horizon occurs at
time t with price q, the appropriate constraint on the
price at a generic time t0 with price q0 is q0 � q+c4tÉt05
regardless of whether t > t0 and regardless of whether
q > q0.
We can solve this problem by solving two dynamic

programs. We first compute the value of all triangular
(or trapezoidal) regions according to

Zm1n4p5

= max
k28m10001n9

p02D2p0�p+kc

⇢ SX

w=0

min8k1nÉw9X

t=max8m1kÉw9

Ét1wp
0F̄t1w4p

0 + c4kÉ t55

+Zm1kÉ14p
0 É kc5+Zk+11n4p

0 É kc5

�
1

since, as before, the value of a triangular region can
be decomposed into smaller triangular regions. The
value of a rectangular region with lowest effective
price at periods t can be obtained by combining a tri-
angular (or trapezoidal) region associated with peri-
ods before t, the customers served at period t, and a
rectangular region associated with periods after t, as
seen in Figure 8. We can thus compute the values of
rectangular regions by applying

Z̃m1n4p5

= max
k28m10001n9p02D2p0�p+kc

⇢ SX

w=0

kX

t=max8m1kÉw9

Ét1wp
0F̄t1w4p

0+c4kÉt55

+Zm1kÉ14p
0 Ékc5+Z̃k+11n4p

0 Ékc5

�
0

The revenue of the firm over the entire horizon is
given by Z̃11T 4ÉcT 5, where the ÉcT represents the fact
that lowest delay-modified effective price of the entire
horizon is unconstrained. We thus obtain Theorem 5.

Theorem 5. An optimal pricing policy can be com-

puted in time O4S2T 34cT + V̄ /„55.

The algorithm for the generalized finite hori-
zon runs in polynomial time, but it is significantly
more computationally demanding than the original
dynamic program. The source of this additional com-
putational burden is the larger state space required in
the new dynamic program. The state space is larger
for three reasons: we need to analyze two types of
geometric figures, triangles and rectangles; we need
to associate a state with each start and end period,
rather than just a duration, to account for nonstation-
arity; we need to enlarge the set of prices in the state
space to correctly restrict the delay-modified effective
prices in a given state.

8. Conclusions
We studied the problem of how to choose a sequence
of prices, under price commitment, given a customer
population that arrives over time that is heteroge-
neous with regard to both valuation and patience. We
established that the problem of finding optimal pric-
ing policies is a tractable one with very few assump-
tions on the distribution of customers’ willingness to
wait and valuation, and proposed a novel geometrical
approach for solving the problem. From a structural
perspective, there are optimal pricing policies that
are cyclical with a “short" period, in the sense that
the cycle length is at most twice the maximum will-
ingness to wait of the customer population. In addi-
tion, the class of cyclic monotone policies is generally
a suboptimal one and there is an opportunity cost
associated with restricting attention to cyclic mono-
tone policies that can be significant. Optimal policies
often take the form of nested sales, where the firm
oscillates between targeting high-value impatient cus-
tomers and targeting more patient customer classes.
We have further established a form of equivalence
between the above problem and that of pricing to
a pool of heterogeneous consumers who may stock-
pile units of the products over time. This equivalence
enables one to obtain the same set of structural and
algorithmic results for this problem. The framework
and results we present in this paper lay the ground for
a potential new approach to a class of intertemporal
pricing problems. Avenues for future research include
the expansion of the set of problems that may be
tackled through the present approach. For example,
the question of how one may coordinate pricing and
inventory decisions in the presence of strategic cus-
tomers is a natural extension. Now rationing becomes
a concern for the customers, and inventory could
potentially serve as a commitment device in a model
without commitment. Another interesting direction of
future research pertains to the potential use of general
models of strategic consumers with heterogeneous
preferences for estimation purposes.
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Appendix. Selected Proofs

Proof of Lemma 1. For any period t, if t is not a reset
period, then pt > et1S4p5, implying there exists some period
t1 2 8t + 11 0 0 0 1 t + S9 such that pt > pt1 . If t1 is also not a
reset period, by the same logic, there exists some t2 2 8t1 +
11 0 0 0 1 t1+ S9 such that pt1 > pt2 . Because the set of available
prices D is finite, one may repeat this argument only óDó
times. Thus, at least one period in 8t1 0 0 0 1 t+SóDó9 is a reset
period. É

Proof of Lemma 2. For any pricing policy p and time T ,
let j4T 1p5 denote the integer that satisfies Vj4T 1p5 < T 
Vj4T 1p5+1. That is, j4T 1p5 defines the component policy being
offered at time T . The value of policy p is given by

R4p5 = lim inf
T!à

1
T

TX

t=1

SX

w=0
É4w5et1w4p5F̄ 4et1w4p55

= lim inf
T!à

1
T

✓j4T 1p5X

i=0
R4Ci4p55LCi4p5

+
TX

t=Vj4T 1p5+1

SX

w=0
É4w5et1w4p5F̄ 4et1w4p55

◆
1

where the revenue of the policy up to time T is composed
of the revenue of the component policies, for components
from 0 to j4T 1p5, plus a leftover term starting from period
Vj4T 1p5+1 up to period T for any leftover periods not com-
pletely covered in a component policy by time T . The aver-
age revenue obtained from the leftover component

lim
T!à

1
T

TX

t=Vj4T 1p5+1

SX

w=0
É4w5et1w4p5F̄ 4et1w4p55= 01

since the per-period revenue is bounded and the leftover
term includes at most SóDó periods by Lemma 1. Therefore,
the value obtained from policy p is nothing but an average
of the values obtained by the component policies weighted
by their lengths, i.e.,

R4p5= lim inf
T!à

1
T

j4T 1p5X

i=0
R4Ci4p55LCi4p51

and the revenue from the policy p is bounded by the supre-
mum among the revenues of all the component policies
of p. É

Proof of Proposition 1. By Lemma 1, every component
pricing policy is a cyclic policy with length at most SóDó.
Thus, the set of possible component policies is finite and

its cardinality is bounded by
PSóDó

i=1 óDói, implying that the
supremum in Equation (4) is attained. Therefore, by the pol-
icy decomposition lemma, there exists a cyclic policy with
length at most SóDó that maximizes the seller’s revenue. É

Proof of Lemma 3. Let p be any cyclic policy with
length T . It is convenient to define the natural extension of
p to the set of nonpositive indices. Since pr is a reflection of
p, prk = pT+1Ék for any k. For any time t and willingness-to-
wait w, the effective prices of the policy p and its reflection
pr satisfy

eT+1ÉtÉw1w4p
r 5 = min

T+1ÉtÉwkT+1Ét
pT+1Ék

= min
tk0t+w

pk0 = et1w4p51 (17)

where the second equality is obtained by a change of vari-
ables k0 = T + 1É k. The revenue obtained from customers
with willingness-to-wait w under the reflected policy pr is

Rw4p
r 5 = É4w5

T

TX

t=1
et1w4p

r 5F̄w4et1w4p
r 55

= É4w5

T

TX

t=1
eT+1ÉtÉw1w4p

r 5F̄w4eT+1ÉtÉw1w4p
r 55

= É4w5

T

TX

t=1
et1w4p5F̄w4et1w4p55=Rw4p51

where the second equality follows from the cyclic nature
of the policy and the third is derived from Equation (17).
By summing over all w from 0 to S, we obtain the desired
result, i.e., R4pr 5=PS

w=0Rw4pr 5=PS
w=0Rw4p5=R4p5. É

Proof of Theorem 1. At first, assume the set of prices
D is finite. Then, by Proposition 1, there exists an optimal
cyclic policy. Let p be an optimal policy such that its length
T = Lp is minimal among all optimal policies. Assume,
without loss of generality, that pT = min1kT pk. Let p0 =
min1kTÉ1 pk denote the second-lowest price in the policy.
There can be no reset periods in 811 0 0 0 1T É 19, otherwise
a shorter optimal policy would exist by the policy decom-
position lemma. Therefore, the lowest price in the policy is
used only once per cycle, i.e., pT < p0. Let t0 and t00 represent
respectively the first and last periods in k 2 811 0 0 0 1T É 19
such that pk = p0. Then, t0 � T É S, since otherwise t0 would
be a reset period. Consider now the time- reflected pol-
icy pr , which yields the same revenue as p by the reflec-
tion lemma. In the reflected policy, the first time price p0 is
used is at T + 1É t00, and the next time the lowest price in
the policy (min1kTÉ1 pk) is used is at time T + 1 (the first
period of the next cycle). If T + 1 É t00 was a rest period,
one could construct a policy that garners weakly higher rev-
enues with shorter cycles, which would contradict the fact
that the policy we started with was optimal with minimal
length among optimal policies. We deduce that T + 1É t00

cannot be a reset period of the reflected policy, i.e., t00  S.
Combining the bounds on t0 and t00, we obtain that S � t00 �
t0 � T É S and, therefore, T  2S. This completes the proof
of the theorem for the case in which óDó<à.

Now let the set of prices D be an arbitrary closed sub-
set of 601 V̄ 7. Let 8pi9i2� be a sequence of feasible price
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sequences in P such that R4pk5 � R⇤ É 1/k, where R⇤ =
supp2P R4p5. Let V k = ëV̄ kí/k and let p̂k be a sequence of
prices such that each pkt is equal to pk rounded down to
the closest element in the set 8011/k12/k1 0 0 0 1V kÉ2/k1V kÉ
1/k9. Since the functions Fw4 · 5 are Lipschitz continuous for
all w and the effective prices et1w4p5 are also Lipschitz con-
tinuous functions of the relevant prices pt1 0 0 0 1pt+w , the rev-
enue function R4 · 5 is Lipschitz continuous in the infinity
norm, so there exists a constant L such that óR4pk5ÉR4p̂k5ó 
L supt2� óptÉ p̂tó. Therefore, R4p̂k5�R⇤ÉL/k. By the first part
of the proof, we can obtain a policy p̃k such that R4p̃k5 �
R4p̂k5 where p̃k is a component policy of p̂k and p̃k has
cycle length at most 2S. By construction, any price in p̃k is
at most 1/k away from the set D. Using the Lipschitz conti-
nuity of R4 · 5 again, we can construct a cyclic pricing policy
p̄k 2P with period at most 2S such that R4p̄k5� R⇤ É 2L/k.
By considering the limit as k goes to infinity, we observe
that the supremum revenue among all cyclic policies in P
with length at most 2S is also R⇤. Since the set D is closed
and bounded, the set of cyclic policies with length at most
T with 1 T  2S is compact. The problem of maximizing
the average revenue over all policies with cycle exactly T =
11 0 0 0 12S is a maximization problem of a continuous func-
tion over a compact set. Therefore, the supremum over the
set of cyclic policies with length at most 2S is attained. É

Proof of Theorem 2. The text preceding the statement
of the theorem explains why the Bellman equation in Equa-
tion (6) applies to the value functionWn4p5, and we now con-
struct an algorithm that uses it to find optimal pricing poli-
cies. The first step of the algorithm is to compute the value ofPj

w=i É4w5pF̄w4p5 for all i, j , and p, which takesO4óDóS25 steps
if done recursively. Now, notice that for any fixed n and k,
the sequence tn1k1w always takes the form 4112131 0 0 0 1nÉ 11
n1n1 0 0 0 1n1n1n É 11 0 0 0 1m + 11m5, with a first part where
numbers increase by 1 in each step, a second part where
numbers stay flat, and a third part where they decrease by 1
in each step. Therefore, we can recursively compute the val-
ues of

PS
w=0 tn1k1wÉ4w5pF̄w4p5 for all n, k, and p in O4óDóS25 by

utilizing the previously computed values of
Pj

w=i É4w5pF̄w4p5
as building blocks. Next, define the auxiliary value function
W̃n4p5 as

W̃n4p5= max
k28110001n9

⇢ SX

w=0
tn1k1wÉ4w5pF̄w4p5+WkÉ14p5+WnÉk4p5

�

so that Wn4p5 = maxp02D2p0�p W̃n4p
05. Let W04p5 = W̃04p5 = 0

for any p 2D. Suppose the values of Wn4p5 are known for
all values of n up to T É 1 and all values of p 2 D. Then,
the values of W̃T 4p5 can be computed by the equation above
for n = T and all p 2 D in time O4óDóT 5. With the values
of W̃n4p5 on hand for all p, we can compute the values
of Wn4p5 for all p 2 D in time O4óDó5. By Theorem 1, it
is sufficient to consider policies of cycle length up to 2S.
Repeating this process for all T from 1 to 2SÉ 1 takes time
O4óDóS25. With the value functions computed, the optimal
policy of length T can be computed for each T by Equa-
tion (7) and the actual overall optimal policy can deter-
mined by Equation (8). Since these last two operations take
O4óDóS5 time, the overall computational complexity of this
algorithm is O4óDóS25. É

Proof of Theorem 5. This algorithm works very simi-
larly to the infinite time horizon algorithm from Theorem 2,
except that this generalized model does not have some of
the symmetry features of the original problem that allow
for speedier computation. The value of

SX

w=0

min8k1nÉw9X

t=max8m1kÉw9

Ét1wp
0 F̄t1w4p

0 + c4kÉ t55

can be computed for any m, n, k and p in O4S25 as the sec-
ond summation has at most S terms. Therefore, it can be
computed for all possible parameters in time O4óDóS2T 35,
where óDó= cT + V̄ /„. We can then use dynamic program-
ming to compute the value of Zm1n4p5 for all possible param-
eters in less time than O4S2T 34cT + V̄ /„55. We can then
repeat the same process with the values of

SX

w=0

kX

t=max8m1kÉw9

Ét1wp
0 F̄t1w4p

0 + c4kÉ t55

to obtain the value of Z̃m1n4p5 for all problem parameters,
thus finding the optimal pricing policy. É
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